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Abstract

We use boundary element models of fracture propagation and linkage to investigate the factors controlling the development of two-

dimensional, multi-directional–polygonal fracture networks, characterised by a large number of abutting intersections between fractures.

The position and orientation of a number of fracture seeds are prescribed in the model, which propagate when the applied stress reaches a

critical value, according to linear elastic fracture mechanics theory. The applied boundary condition is a remote, isotropic, horizontal tension,

where the stress is increased at a steady rate throughout each model to simulate continued fracture growth. Realistic polygonal systems are

developed with the boundary element model simulations, which are comparable with those observed in natural systems (such as those found

within Eocene and Oligocene mudrocks in the North Sea and on the surface of Mars). If conditions exist where a small number of fracture

seeds propagate and develop significant structures before others, then these will dominate the resulting fracture network geometry. Not only

do such early structures represent the largest fractures in the system, they also significantly modify the stress field around them preventing

some other seeds from developing, and influencing the propagation paths of nearby fractures. Fracture seeding distribution and the rate at

which the stress is increased are found to be the most significant parameters affecting the development of fracture network geometry. These

results suggest that the geometry of evolving fracture networks should be considered not only in terms of the mechanical properties of the

deforming material, but also in terms of the stress rate driving deformation.

q 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

An understanding of fracture geometry in two and three

dimensions directly affects the geoscientist’s ability to

analyse subsurface fluid flow in fractured reservoirs, to

model seismic wave propagation through fractured rock and

to understand the evolution of geological structures. While

outcrop exposures, or remotely sensed images of natural

fault and fracture networks, provide snapshots of fracture

systems in their final state, it is difficult to ‘back track’ and

reconstruct fracture evolution from these data. A large body

of rock mechanics and geological literature indicates that

fracture network development is strongly controlled by the

stress state that operated during formation, mechanical

interactions between adjacent fractures, the material proper-

ties of the rock and local heterogeneities in the rock mass

(e.g. Lawn and Wilshaw, 1975; Cotterell and Rice, 1980;

Pollard et al., 1982; Atkinson, 1987; Germanovich et al.,

1996 amongst many others). In some complex manner, it is

the interplay of all of these factors that are responsible for

the development of the resultant fracture pattern. Numerical

models that incorporate these factors can be used to

understand how fracture network geometries are related to

the conditions of their formation. Here we report the results

of numerical experiments using boundary element model-

ling based on linear elastic fracture mechanics to simulate

the growth of two-dimensional polygonal fracture patterns.

In particular we examine the role that stress history, flaw

distributions in the rock mass, and material properties play

in controlling the geometry of a fracture network as it

grows.

Previous numerical work on the evolution of fracture

systems has tended to concentrate on either linear fracture
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systems (Cowie et al., 1993; Olson 1993; Renshaw and

Pollard, 1994) or relatively simple intersecting en-échelon

fracture geometries (Cowie, 1998; Olson and Pollard, 1989;

Tuckwell et al., 1998). In this paper we investigate more

complex two-dimensional fracture systems and model the

growth and evolution of a network of fractures growing

simultaneously, to form a polygonal pattern. Polygonal

fracture systems occur on Earth from a centimetre to

kilometre scale and have also been observed on the surface

of Mars at a scale of tens of kilometres. Examples include

the recently discovered polygonal faults that form within

mudrocks at a kilometre scale in sedimentary basins

(Cartwright and Lonergan, 1996; Lonergan et al., 1998;

Watterson et al., 2000) and the giant polygons that have

been imaged on the surface of Mars, in the Utopia Planita

region (Carr et al., 1976; McGill, 1986; Hiesinger and Head,

2000; Fig. 1). The geological map of Utopia Planita

suggests that the material deformed by the giant polygons

is of volcanic, alluvial or aeolian origin (Greeley and Guest,

1987). The more recent work of Hiesinger and Head (2000)

infers that the polygons occur in sediments of a paleolake

that once filled the Utopia Basin. The principal geometrical

characteristics of polygonal fracture sets are a lack of

preferred fracture orientations, many more tip-to-wall type

intersections than tip-to-tip linkages, and log-normal

frequency/length distributions of fractures (Lonergan et al.,

1998).

The tensile stresses required to generate polygonal

fractures such as mudcracks, cooling joints in basalt, or

permafrost polygons arise because the sediment or rock is

prevented from contracting (Lachenbruch, 1962; Aydin and

DeGraff, 1988). Similarly it has been suggested by

Dewhurst et al. (1999) that polygonal fault arrays in North

Sea mudrocks formed due to syneresis-induced contraction

during burial. This process will result in an isotropic net

tensional stress in all horizontal directions. Likewise the

Martian polygons are attributed to cracking due to tension

(see Hiesinger and Head (2000) for a recent review). Thus,

as a first approach, a horizontal isotropic remote tension was

applied as the loading condition in the numerical models to

generate two-dimensional irregular polygonal fracture

patterns. Undoubtedly in many natural polygonal systems

additional stresses arising due to variations in temperature,

layer thickness, slope and regional tectonic stresses will

affect the resulting fracture patterns, but we do not include

these effects in this work.

We were particularly interested in investigating the role

that the build up of the remote loading stresses might have in

influencing fracture growth. In polygonal systems, during

continuing compaction, desiccation, or cooling the ambient

tensile stresses will increase, and thus we examine the effect

that building up this stress in large or small increments (to

simulate fast and slow growth) has on the resultant

polygonal fracture network. Mudcrack experiments show

that the desiccation rate strongly influences the resultant

fracture pattern. Large numbers of equi-dimensional cracks

form simultaneously in thin mud layers that desiccate

rapidly, whereas a thick mud layer that desiccates slowly is

dominated by a few long cracks that are established early in

the growth history (Corte and Higashi, 1964). Most previous

Fig. 1. Polygonal fracture sets: (a) an example of polygonal faults that form at a kilometre scale in mudrocks in the North Sea; coherence attribute map of part of

an Upper Oligocene horizon in the Central North Sea, UK Quadrant 16, from a 3D seismic reflection dataset. (b) Viking orbiter image of polygonal terrain in

Utopia Planita region, Northern Martian plains, at 230 m resolution (from Hiesinger and Head, 2000).

G.W. Tuckwell et al. / Journal of Structural Geology 25 (2003) 1241–12501242



geological analyses of interacting fractures have not

considered the effect of varying the rate at which the

loading stress is applied (e.g. Olson, 1993; Cowie, 1998).

Hence, the analysis described here, which is appropriate for

polygonal systems, may also shed some further light on the

growth of other fracture systems growing in response to

stretching.

Experimental and theoretical work in elastic fracture

mechanics suggests that fracture propagation rates in rocks

are dependent on the energy at fracture tips (e.g. Atkinson,

1984; Olson, 1993). A fracture propagates once the stress

intensity at the tip, K, exceeds a critical value known as the

fracture toughness. For an isolated, two-dimensional crack

tip, the stress intensity factor is a function of the remote

loading stresses (sr), and the crack length, 2c (e.g. Lawn and

Wilshaw, 1975; Atkinson, 1987):

K ¼ srðpcÞ1=2; ð1Þ

and therefore for a single crack one would expect no

difference in the resultant crack length whether the remote

loading stress is applied in a few large increments or as

many smaller increments. However, where a large number

of fractures are growing simultaneously and mechanical

interactions modify the local stress fields around neighbour-

ing crack tips the situation becomes more complicated. The

driving stress becomes a distribution that varies through the

model area rather than a constant, and Eq. (1) no longer

applies in this simple form.

2. Numerical method

A boundary element modelling code, based on the

displacement discontinuity method of Crouch and Starfield

(1990), is used to simulate the development of polygonal

fracture systems. In this method, fractures are modelled by a

series of short linear elements along each of which the

relative displacement (e.g. opening and slip) is constant, and

the resistance to shear stress is zero. In this way a system of

fractures within a two-dimensional elastic medium can be

described. The relative displacement of each boundary

element, and the local stress field associated with the

fracture system can be calculated given the elastic proper-

ties of the material, the far-field stress, and the stress

boundary conditions on the fracture walls. In the model,

individual fractures may grow by fracture propagation or

linkage. Fracture propagation is simulated by the addition of

a new element at the tip of a fracture. A fracture will

propagate if the calculated stress intensity at the tip of the

fracture exceeds the fracture toughness of the material

(Lawn and Wilshaw, 1975). The mode I and II stress

intensity factors, KI and KII, are calculated from the normal

and shear displacement discontinuity of the tip element, Dn

and Ds, by:

KI ¼ 0:806

ffiffi
p

p
E

4ð1 2 n2Þ
ffi
l

p

 !
Dn;

KII ¼ 0:806

ffiffi
p

p
E

4ð1 2 n2Þ
ffi
l

p

 !
Ds;

ð2Þ

where E is Young’s modulus, n is Poisson’s ratio, and l is

the length of the fracture tip element (Olsen, 1991). The

total stress intensity at the tip, Ktip, is calculated by (Lawn

and Wilshaw, 1975):

Ktip ¼ cos
u

2
KIcos2 u

2
2

3

2
KIIsinu

� �
: ð3Þ

The orientation of propagation, u, is calculated such that the

resolved normal stress on the new element is maximised

(where tensile stresses are positive), and the resolved shear

stress is zero, by:

KIsinuþ KIIð3cosu2 1Þ ¼ 0 ð4Þ

(Erdogan and Sih, 1963).

The length of the new element is proportional to the

magnitude of the stress intensity at the tip, which is the same

criterion used by Renshaw and Pollard (1994) in their

models of the evolution of a single, planar set of parallel

fractures. In this way, fractures under greater driving stress

than others will propagate faster, and the effect of stress

history is explicitly built into the model. The second method

of fracture growth is by linkage. This occurs by the

interaction of process zones ahead of a propagating fracture.

A process zone is defined as an area of micro-cracking and

other non-linear deformation that occurs close to the

fracture tip. The physical controls on the size of this zone

are poorly understood (see Rubin (1993) for a review).

Estimates for the size of process zones of shear faults are in

the region of 10% of the fault length (e.g. Cox and Scholz,

1988; An and Sammis, 1996). Process zone size is likely to

be less for mode I fractures, therefore we take this to be a

maximum limiting value. We assume the extent of the

process zone in our models is proportional to the stress

intensity at the fracture tip, and that it can extend a

maximum of 10% of the total fracture from the tip. Tip-to-

tip linkage occurs in the model when the calculated extents

of the process zone ahead of two propagating fractures

overlap. In this event, new elements are created within the

model joining the two tips. Tip-to-wall linkage will occur

when the calculated extent of the process zone ahead of a

propagating fracture overlaps the wall of another fracture.

Stresses and displacements within the model are recalcu-

lated after each growth event.

A simple application of the numerical model to a pair of

fractures is illustrated in Fig. 2. The two fractures are

initiated by short seeds of equal length oriented parallel to

the x-axis, with a relative offset in position in both x and y. A

driving stress of 10 MPa is applied parallel to the y-axis. The
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model is symmetrical and the two fractures develop as

mirrors of each other (Fig. 2a). Since the stress distribution

in the models is recalculated after each growth iteration,

mechanical interaction between fractures is implicit in the

model formulation. Initially, the stress intensity factor at

each tip is approximately equal (Fig. 2b). As the fractures

propagate they begin to interact more strongly. This

increased interaction is reflected both in the fracture

propagation path and in the stress intensity factor at the

tips. As tip 1 propagates it falls into the stress shadow of the

other fracture and the stress intensity factor is reduced. As a

result tip 2 will propagate at a greater relative velocity than

tip 1. This experiment reproduces the results of Olson and

Pollard (1989).

2.1. Varying fracture seed length

Next we investigate the asymmetric case where the initial

seed for fracture A is five times the length of the initial seed

for fracture B (Fig. 3). The starting position of the seeds and

the driving stress are identical to those used in the

symmetrical experiment. Because of the asymmetric

fracture seed lengths, the stress intensity and propagation

geometry are different at each fracture tip as the model

evolves (Fig. 3b and c). Tip 1 has the highest stress intensity

factor for the first half of the model run, and so propagates

with a greater relative velocity during this period. In

addition, there is relatively little deflection in the propa-

gation path of this tip. Throughout the model run, the stress

intensities at tips 2 and 3 are similar, but the propagation

paths are different with tip 3 deflected to a greater extent

from the x-axis. Tip 4 has the lowest stress intensity factor

throughout the model, and the propagation path is greatly

deflected towards the wall of fracture A. From the outset of

the model, fracture A has an advantage over fracture B since

it has a greater length. Consequently greater stress intensity

Fig. 2. Boundary element models of two propagating fractures in which the

initial fracture seeds are equal in length (a). Graphs show the variation of

stress intensity factor at fracture tips with model growth iteration (b) and

fracture length against model growth iteration (c). Model length dimensions

are arbitrary and are provided to facilitate a comparison with Fig. 3.

Fig. 3. Boundary element models of two propagating fractures in which the

initial fracture seeds are unequal in length (a). Graphs show the variation of

stress intensity factor at fracture tips with model growth iteration (b) and

fracture length against model growth iteration (c). Model length dimensions

are arbitrary and are provided to facilitate a comparison with Fig. 2.
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factors develop at the tips of fracture A than B, and fracture

B remains shorter than fracture A (Fig. 3a and c). This

positive feedback in mechanical advantage is a key property

of interacting fractures. The larger fractures in the

system will typically propagate at a greater relative rate,

and will affect the growth of smaller fractures (compare

Figs. 2c and 3c).

2.2. Varying size of stress increment

In a final simple example, we have repeated the

asymmetric two-fracture experiment but varied the size of

the stress increment applied between each model step by

factors of 10 (Fig. 4). As in the experiment illustrated in Fig.

3, the two seeds are oriented parallel to the x-axis, with a

relative offset in position in both x and y, but fracture A

started out with an initial seed that was 10 times the length

of B. A driving stress in increments of 0.05, 0.5 and 5 MPa,

respectively, was applied parallel to the y-axis. The results

of these model runs particularly emphasize the control that

the magnitude of the driving stress, and thus different

loading histories, has on the final fracture geometry. At

lower rates of stress increase (Fig. 4a and b), the stress

intensities at the tips of fracture A increase much more

rapidly than the tips of B, and thus fracture A propagates

more quickly and becomes longer during the model run. At

higher rates of stress increase there is less of a difference

between the stress intensities at the tips of fracture A, and tip

3 on fracture B and consequently fracture B can grow more

rapidly than it could when smaller stress increments were

applied (Fig. 4c). Thus, decreasing the size of the stress

increment between model steps amplifies the mechanical

advantage of the longer fractures in the system.

3. Models of polygonal fracture networks

To model the development of polygonal fracture net-

works, we begin with a set of 50 fracture seeds in a square

area of dimensionless area L 2. The seeds represent flaws in

the original rock, from which a fracture can propagate. In

order to assess the dependence of the models on the spatial

distribution of seeds, two end-member distributions are

used: a random distribution, and a regular, equally spaced

arrangement of seeds. Two distributions of initial seed

lengths were used. Since the stress intensity at the fracture

tips is related to length (Eq. (1)), and propagation occurs

when the stress intensity exceeds the fracture toughness of

the material, fracture seeds of different lengths can be

considered to represent flaws of different strengths. There-

fore a greater range of initial seed lengths represents a more

heterogeneous material. Seed lengths either varied ran-

domly between 0 and 0.001L, or between 0.0004L and

0.0006L. Hereafter we distinguish these as high and low

heterogeneity. The fracture seeds are oriented randomly,

and are sufficiently short and spaced widely enough that

they induce only small local stress field perturbations so

there is essentially no mechanical interaction between

Fig. 4. Boundary element model of two propagating fractures, in which the seed length for fracture A was 10 times the length of the seed for B. Driving stresses

in increments of 0.05 MPa were applied in model (a), 0.5 MPa in model (b) and 5 M Pa in model (c). Maps show the final fracture geometry at the end of the

simulation. Graphs show the variation of stress intensity factor at fracture tips with model growth iteration. Model length dimensions are arbitrary and are

provided to facilitate a comparison between the three simulations.
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neighbouring seeds at the beginning of each simulation. As

the model develops, fracture seeds begin to propagate as the

stress intensities at their tips exceed the fracture toughness

of the material. In our models, we define the initiation of

seed growth as fracture nucleation. In addition to the

heterogeneity of the material, the effects of two other

parameters were investigated. Elastic moduli were chosen to

bracket values typical of sedimentary rocks (Cripps and

Taylor, 1981; Atkinson et al., 1990). Half the models were

run with a Young’s modulus, E ¼ 140 MPa, and bulk

modulus, G ¼ 75 MPa. The other half were run with

E ¼ 14 MPa, and G ¼ 7.5 MPa. These we term as elasti-

cally stiff and elastically compliant, respectively. The final

parameter investigated was the loading history for the

model. The stress applied to the models is increased

incrementally from zero after each calculation step to

simulate the accumulation of elastic strain. The model

calculations include the local redistribution of this stress by

brittle failure. Two different loading histories were used in

the models, with stress increasing from zero by 0.5 or

0.05 MPa with each growth increment. These are referred to

as fast and slow stress accumulation, respectively, and

represent fast or slow shrinkage rates during polygonal

fracture network evolution. The parameter combinations forT
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Fig. 5. Comparison of four final fracture models: (a) and (b) fast stress

remote loading rate for models with random and regular initial fracture

seeds, respectively; (c) and (d) slow stress loading rate for models with

random and regular initial fracture seeds, respectively. Note how in the

slow models a small number of long fractures dominate the final fracture

map.
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each of the 14 simulations are identified by three letters,

ABC, in Table 1 and Figs. 5–7. The value for A can be F or S

and refers to a stress loading increment of 0.5 or 0.05 MPa;

for B can be H or L referring to elastically stiff or compliant

moduli and for C can be H or L indicating high or low

material heterogeneity. Additionally a regular initial seed

distribution is distinguished from a random seed distribution

by the addition of a further suffix, ‘_R’.

4. Description of polygonal geometries

Numerical models were run for all combinations of

elastic moduli, seed length distribution and loading

history to investigate the effects of each parameter

(Table 1). The model fracture arrays (Fig. 5) visually

reproduce the main characteristics of other natural

irregular polygonal fracture sets, such as those illus-

trated in Fig. 1, and are judged to be realistic

representations of polygonally organized extensional

fractures. A vector mean of the length-weighted fracture

orientations was calculated for each simulation (Table 1,

and rose diagrams in Figs. 5 and 7). The mean length of

this vector, L, is a measure of the dispersion in the

orientation data, with high values of L indicating that

most of the fractures are tightly clustered about the

mean. Conversely values of L close to zero imply that

the data are dispersed. For both the numerical

simulations and North Sea polygonal data, the values

of L are close to zero (Table 1). Standard statistical

tests for circular distributions (e.g. Von Mises distri-

butions and the Rayleigh test; Cheeney, 1983; Davis,

1986) confirm that none of the calculated mean

orientations are statistically different to the mean of a

uniform circular distribution; i.e. there is no statistically

significant preferred fracture orientation.

An analysis of linkage types shows a majority of tip-to-

wall linkages over tip-to-tip linkages and intersections of

more than two fractures (labelled complex intersections in

Table 1) and the fracture lengths have log-normal length

frequency distributions (Fig. 6). For the majority of the

numerical model simulations the fracture length distri-

butions, when normalised to the geometric mean, are

indistinguishable from North Sea polygonal datasets (Fig.

6). All numerical realisations show features typical of

mechanical interaction between propagating cracks, with

fracture tips curving in towards neighbouring fractures.

Fig. 6. Cumulative frequency plots of fracture lengths for numerical models

and real data (polygonal faults in the North Sea; maps A–D refer to data in

Fig. 4 of Lonergan et al. (1998)).

Fig. 7. Comparison of four final fracture models with four different initial

random fracture seeds. Other mechanical properties were the same for each

model, i.e. fast stress accumulation rate, elastically stiff material and high

material heterogeneity (FHH).
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For the same initial fracture seed distributions, different

mechanical conditions generate strikingly different fracture

patterns, and from the final maps it would be impossible to

deduce that the fracture patterns grew from the same initial

distribution of flaws (compare maps a and c with same

random flaw distribution; and maps b and d with same

regular flaw distribution in Fig. 5). Of the mechanical

variables tested in the 14 simulations, the rate of stress

increase (large or small increments during the model

evolution) was the most significant parameter affecting the

development of the fracture network geometry. Of the 14

different simulations, five were run with a slow stress

accumulation loading history (SHH, SHL, SLL, SLH and

SHL_R in Table 1). Three of these are distinguishable on

the length frequency graph (Fig. 6), as they have higher

relative proportions of longer fractures, compared with all

other simulations. Within the range of values tested,

variation in elastic moduli, and material heterogeneity

have the least affect on the final fracture geometry. When

the mechanical conditions are held constant, the heterogen-

eity introduced by either random or regular initial seed

distributions produces very different final network geome-

tries (compare maps a and b, model FHH with FHH_R;

Fig. 5). When different random starting seed distributions

are used, again the resultant fracture network geometries are

markedly different (Fig. 6).

5. Fracture network evolution—effect of stress history,

flaw distribution and material properties

The ability to examine the fracture network as it evolves

helps to provide insights as to why both the rate of stress

accumulation and the distribution of the initial fracture

nucleation loci exert such a strong control on the final

network geometry (Fig. 8). Visual differences in fracture

patterns grown from exactly the same seed distribution can

be attributed to the early development of a small number of

fractures. Larger fractures will typically propagate at a

greater relative rate within the model. Thus if a long fracture

Fig. 8. Evolution of a polygonal fracture network using the boundary element simulation: (a) slow stress accumulation rate; (b) fast stress accumulation rate.

Model (a) is run SHL_R (elastically stiff material with low heterogeneity); model (b) is run FHH_R (elastically stiff material with high heterogeneity). A

regular starting seed distribution was used for the two simulations.
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develops early in the model a positive feedback mechanism

promotes its growth relative to others. If conditions exist

within the model such that a small number of randomly

oriented fractures begin to propagate early in the develop-

ment of the fracture network, then these fractures go on to

strongly influence the subsequent development of the

network (Fig. 8a). A small number of long fractures

developed early in the model run will dominate the local

stress field, and as subsequent fractures develop and grow,

their propagation paths are strongly influenced by the large

fractures. Fractures developing later in the models tend to

propagate at high angles to the pre-existing fractures. The

final fracture pattern produced may appear visually to have

some preferred fracture orientations (see most evolved map

in Fig. 8a—final state of model SHL_R), although

statistically there is no significant orientation (Table 1).

Conversely, if the majority of fractures begin to propagate at

the same time (Fig. 8b), no single or small sub-set of

fractures dominates the stress field, and the fracture network

developed appears to be more uniform. Such a model

develops a narrower range of fracture lengths, with

proportionally fewer short fractures.

The early development of a small number of fractures is

associated with (1) a slow loading history and (2) an

elastically compliant material with high heterogeneity. Of

these two factors, slow loading history appears to exert the

greatest control. A heterogeneous material will contain a

small number of relatively large fracture seeds, equivalent

to a small number of relatively weak areas within the

material. As the loading stress increases, these seeds begin

to propagate before others within the model. A more

heterogeneous material promotes the early development of a

small number of fractures. In our tests, the rate of increase of

the loading stress was found to have the greatest effect on

the geometry of the evolved fracture network. Consider an

applied loading stress sufficient for a small number of

fractures to begin to propagate. If this loading stress is

increased rapidly, then other fracture seeds within the model

begin to propagate before the early fractures have increased

in length. However, if the loading stress is such that only a

small number of fractures will propagate, and remains so

long enough for these fractures to increase significantly in

length, they will dominate the model regardless of

subsequent stress changes.

6. Conclusions

The process of recreating natural fracture patterns using

numerical simulation based on a few mechanical rules

provides a valuable insight into the controlling influences on

polygonal fracture network development. We have success-

fully used boundary element models of fracture growth and

linkage to reproduce polygonally organized fracture pat-

terns, such as those that occur in mudrocks in the North Sea

and on the surface of Mars. Our results show that the

detailed geometry of the fracture network is greatly affected

by the early stress history during fracture nucleation. In a

heterogeneous material, a slow accumulation of far-field

stress favours early development of a small number of

fractures. These early fractures modify the local stress field,

and influence the propagation path of the fractures around

them. The positive feedback during growth can cause small

differences in initial growth to produce long fractures,

which have a very significant effect on the resultant fracture

pattern. Here, we have used only a limited range of possible

stress histories as boundary conditions for the models. Sharp

changes in stress conditions have not been considered nor

has the possibility that for many polygonal fracture systems

the rate of increase of driving stresses may start out high and

then decrease. For example, in systems that are cooling or

desiccating the rate of tensile stress increase may be highest

early on when cooling or desiccation rates are greatest.

These experiments are based on opening mode fractur-

ing, for a case of idealistic linear elastic fracture mechanics.

However, the key property controlling model behaviour is

the positive feedback that favours the development of longer

fractures. This feedback operates in other tectonic fault

systems (e.g. Pollard and Segall, 1987) and has been

observed in numerical simulations of linear fracture arrays

(Olson, 1993; Renshaw and Pollard, 1994). If the results

presented here can be extrapolated to other structural

settings, then there may be significant implications for

other models of fault growth and interaction, which do not

incorporate the effects of stress history dependency on final

geometries.
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